Number Base Converter
Convert between binary, octal, decimal, and hexadecimal number systems
Input Number
Only 0-9 allowed
Base Conversion Table (0-15)
Decimal | Binary | Octal | Hexadecimal |
---|---|---|---|
0 | 0000 | 0 | 0 |
1 | 0001 | 1 | 1 |
2 | 0010 | 2 | 2 |
3 | 0011 | 3 | 3 |
4 | 0100 | 4 | 4 |
5 | 0101 | 5 | 5 |
6 | 0110 | 6 | 6 |
7 | 0111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Number Base Knowledge
Binary
Base 2, uses only 0 and 1. The number system used internally by computers.
Octal
Base 8, uses digits 0-7. Commonly used for Unix file permissions.
Decimal
Base 10, uses digits 0-9. The number system used in daily life by humans.
Hexadecimal
Base 16, uses digits 0-9 and A-F. Commonly used for color codes and memory addresses.
Conversion Methods
Decimal to Other Bases
Division method: Continuously divide by the target base, arrange remainders in reverse order.
Other Bases to Decimal
Positional notation: Multiply each digit by the corresponding power of the base, then sum.
Binary and Octal
Three binary digits correspond to one octal digit (2³ = 8).
Binary and Hexadecimal
Four binary digits correspond to one hexadecimal digit (2⁴ = 16).